Sunday, February 13, 2011

"Blame it on the (bosa)NOVA"

Nerd-gasm alert!!!

Last night, I watched an episode of NOVA in which the host explored non-Newtonian fluids (think ketchup and blood versus a Newtonian fluid like water).  Check out this clip from Time Warp where the guys play with oobleck:




Of course, play isn't the only use for such fluids.  With the development of magnetorheological (MR) fluid, engineers and scientists hope to build bridges, skyscrapers, shocks, and even body armor that reacts better and more safely to adverse conditions.  Also, it's just really, really cool.  If you're interested, read the excerpt below.  I found it at http://science.howstuffworks.com/


[...] MR fluids are oils that are filled with iron particles. Often, surfactants surround the particles to protect them and help keep them suspended within the fluid. Typically, the iron particles comprise between 20 and 40 percent of the fluid's volume.

The particles are tiny, measuring between 3 and 10 microns. However, they have a powerful effect on the fluid's consistency. When exposed to a magnetic field, the particles line up, thickening the fluid dramatically. The term "magnetorheological" comes from this effect. Rheology is a branch of mechanics that focuses on the relationship between force and the way a material changes shape. The force of magnetism can change both the shape and the viscosity of MR fluids.




Magnetorheological fluid with and without magnetic field
When exposed to a magnetic field, the particles in magnetorheological fluid align along the field lines.


The hardening process takes around twenty thousandths of a second. The effect can vary dramatically depending on the composition of the fluid and the size, shape and strength of the magnetic field. For example, MIT researchers started with spherical iron particles, which can slip past one another, even in the presence of the magnetic field. This limits how hard the armor can become, so researchers are studying other particle shapes that may be more effective.

As with STF, you can see what MR fluids look like using ordinary items. Iron filings mixed with oil create a good representation. When no magnetic field is present, the fluid moves easily. But the influence of a magnet can cause the fluid to become thicker or to take a shape other than that of its container. Sometimes, the difference is very visually dramatic, with the fluid forming distinctive peaks, troughs and other shapes. Artists have even used magnets and MR fluids or similar ferrofluids to create works of art.



With the right combination of density, particle shape and field strength, MR fluid can change from a liquid to a very thick solid. As with shear-thickening fluid, this change could dramatically increase the strength of a piece of armor. The trick is activating the fluid's change of state. Since magnets large enough to affect an entire suit would be heavy and impractical to carry around, researchers propose creating tiny circuits running throughout the armor.



Magnetorheological fluid before and after exposure to a magnetic field
Magnetorheological fluid before and after exposure to a magnetic field


Without current flowing through the wires, the armor would remain soft and flexible. But at the flip of the switch, electrons would begin to move through the circuits, creating a magnetic field in the process. This field would cause the armor to stiffen and harden instantly. Flipping the switch back to the off position would stop the current, and the armor would become flexible again.





Other Uses for MR Fluids
MR fluids have numerous uses besides strengthening body armor. Their ability to change from liquids to semisolids almost instantly makes them useful for dampening impacts and vibrations in items like:
Since it can instantly and reversibly change shape, it could also be used to create scrolling Braille displays or reconfigurable molds.



In addition to making stronger, lighter, more flexible armor, fabrics treated with shear-thickening and magnetorheological fluids could have other uses as well. For example, such materials could create bomb blankets that are easy to fold and carry and can still protect bystanders from explosion and shrapnel. Treated jump boots could harden on impact or when activated, protecting paratroopers' boots. Prison guards' uniforms could make extensive use of liquid armor technology, especially since the weapons guards are most likely to encounter are blunt objects and homemade blades.

Oh, yeah, definite nerd-gasm!!!!!

1 comment: